Numerical simulation of the effect of diaphragm orifice diameter in a flameproof enclosure with an interconnected structure during pressure piling

Author:

Li Dong1,Dai Shijie2

Affiliation:

1. School of mechanical engineering, Hebei University of Technology, Tianjin, China + CNOOC Tianjin Chemical Research & Design Institute Ltd, Tianjin, China

2. School of mechanical engineering, Hebei University of Technology, Tianjin, China

Abstract

Combustible gas explosions are typically triggered at high temperatures by the generation of electric sparks on starting, stopping, or short circuiting of electrical equipment. Flameproof enclosures are widely installed in the petrochemical industry as safety equipment for eliminating ignition sources. Such enclosures are designed with a double-cavity structure, and a hole plate is used to connect the two cavities. However, pressure piling occurs in such double-cavity-connected structures, resulting in flameproof enclosures requiring to bear higher pressure than designed, which is a safety hazard. However, few studies have focused on the effect of the diaphragm orifice diameter of flameproof enclosures. Because the explosion of combustible gas in a flameproof enclosure is a complex process, numerical simulation was performed to study the process. Fluent was used for numerically simulating the ethylene/air premixed gas explosion characteristics of double-cavity-connected structure flameproof enclosures. The effects of an orifice hole diameter from 10 to 45 mm on flameproof characteristics, including the maximum explosion pressure, maximum explosion pressure rise rate, and maximum explosion index, were examined. The results are critical for the effective design of a double-cavity flameproof shell and provide theoretical support for fire suppression in a flameproof enclosure.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3