Experimental study of convective heat transfer in Fe3O4-H2O nanofluids in a grid-shaped micro-channel under magnetic field

Author:

Li Chunquan1,Liu Zhengwei1,Huang Hongyan1,Shang Yuling2,Li Xuebin1

Affiliation:

1. School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin, China

2. School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin,China

Abstract

Experimental study of convective heat transfer with Fe3O4-H2O (1 vol%) nanofluids was examined when the nanofluids flowed through a gridded micro-channel under a perpendicularly oriented magnetic field of 0-700 G strength. The results show that, compared to deionized water, nanofluids reduces chip temperature by 2.11?C and increases the convective heat transfer coefficient by 30.43% when no magnetic field is present. Under magnetic field conditions, the chip temperature was maximally reduced by 3.2?C, while the convective heat transfer coefficient is improved up to 65% in comparison to deionized water. With increasing magnetic field strength, nanofluids pressure drop and flow resistance showed an overall decreasing trend, and the pressure drop at 500 G and 700 G were reduced by 19.3% and 14.51%, respectively, compared to that at 0 G. In terms of overall performance, improved heat transfer in the presence of a magnetic field outper-forms heat transfer in the absence of a magnetic field. The intensive heat transfer factor of nanofluids under magnetic field conditions is greater than one when the Reynolds number exceeds 400. The best overall performance and the highest intensive heat transfer factor are observed at a magnetic field strength of 300 G.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3