Interpretation of Frenkel’s theory of sintering considering evolution of activated pores: II. Model and reliability

Author:

Yu C.L.1,Gao D.P.1,Chai S.M.1,Liu Q.1,Shi H.1,Xie X.L.1

Affiliation:

1. Shaanxi University of Science & Technology, School of Materials Science and Engineering, Xi’an, P.R. China

Abstract

Frenkel's liquid-phase sintering mechanism has essential influence on the sintering of materials, however, by which only the initial 10% during isothermal sintering can be well explained. To overcome this shortage, Nikolic et al. introduced a mathematical model of shrinkage vs. sintering time concerning the activated volume evolution. This article compares the model established by Nikolic et al. with that of the Frenkel's liquid-phase sintering mechanism. The model is verified reliable via training the height and diameter data of cordierite glass by Giess et al. and the first-order partial differential equation. It is verified that the higher the temperature, the more quickly the value of the first-order partial differential equation with time and the relative initial effective activated volume to that in the final equibrium state increases to zero, and the more reliable the model is.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3