Experimental study on heat transfer characteristics of high-temperature heat pipe

Author:

Xu Bowen1,Li Jinwang2,Lu Ningxiang1,Wang Changji1

Affiliation:

1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, China + Jiangsu Province Key Laboratory of Aerospace Power System, Nanjing, China

Abstract

High-temperature heat pipes have broad application prospects in terms of thermal protection of hypersonic aircraft and cooling of space nuclear reactors. In this paper, a high-temperature heat pipe heat transfer performance experimental platform is built to study the heat transfer performance of high-temperature heat pipes at different inclination angles. A heat transfer network model of high-temperature heat pipes containing NCG is established to analyze the influence of NCG. The results show that as the inclination angle of the heat pipe increases, the start-up time of the heat pipe does not change. The heat transfer performance is best when the inclination angle is 30?. High-temperature heat pipes containing NCG will reduce the effective length of the high-temperature heat pipe, increase the thermal resistance, and reduce the heat transfer performance. The high-temperature heat pipe analysis model with NCG established in this paper can be used to predict the heat transfer performance of high-temperature heat pipes containing NCG.

Publisher

National Library of Serbia

Subject

Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visualization study of a high-temperature oscillating heat pipe using X-ray imaging;International Journal of Heat and Mass Transfer;2024-05

2. Study on condensation invalid mechanism of superhydrophobic structure in gravity heat pipes;Thermal Science and Engineering Progress;2023-12

3. Design and Experimental Evaluation of Convective Heat Transfer Coefficient Test System in Nanofluids Spray Cooling;Thermodynamic Mechanism of MQL Grinding with Nano Bio-lubricant;2023-10-31

4. Design and Thermal Performance Research of Airfoil Alkali Metal High-Temperature Heat Pipe;Journal of Thermal Science and Engineering Applications;2023-02-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3