Almost Kenmotsu manifolds with constant Reeb or Ф-sectional curvatures

Author:

Wang Yaning1,Wang Pei1

Affiliation:

1. School of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan, P.R. China

Abstract

In this paper, we prove that an almost Kenmotsu manifold M has constant Reeb sectional curvatures if and only if M has conformal Reeb foliation. Onan almost Kenmotsu h-a-manifold of dimension three having constant ?-sectional curvature, the Reeb vector field is an eigenvector field of the Ricci operator if and only if the manifold is locally isometric to a non-unimodular Lie group.

Publisher

National Library of Serbia

Subject

General Mathematics

Reference33 articles.

1. N. Aktan, A. Gülhan, I. Bektaş, A Schur type theorem for almost cosymplectic manifolds with Kaehlerian leaves, Hacettepe Journal of Mathematics and Statistics 42 (2013) 455-463.

2. D. E. Blair, Special driection on contact metric manifolds of negative ξ-sectional curvature, Annales de la Faculte des Sciences Mathematiques 7 (1998) 365-378.

3. D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, Volume 203, Birkhäuser, New York, 2010.

4. G. Calvaruso, Einstein-like and conformally flat contact metric three-manifolds, Balkan Journal of Geometry and Its Applications 5 (2000) 17-36.

5. G. Calvaruso, D. Perrone, Torsion and homogeneity on contact metric three-manifolds, Annali di Matematica Pura ed Applicata 178 (2000) 271-285.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3