Graphene-reinforced polymeric nanocomposites in computer and electronics industries

Author:

KardanMoghaddam Hossein1,Maraki Mohamadreza1,Rajaei Amir2

Affiliation:

1. Faculty Member of Birjand University of Technology, Birjand, Iran

2. Faculty Member of Computer Engineering, Velayat University, Iranshahr, Iran

Abstract

Graphene is the newest member of the multidimensional graphite carbon family. Graphene is a two-dimensional atomic crystal formed by the arrangement of carbon atoms in the hexagonal network. It is the most rigid and thinnest material ever discovered and has a wide range of uses regarding its unique characteristics. It is expected that this material will create a revolution in the electronics industry. Graphene is a very powerful superconductor as the movability of charged particles is high on it, and additionally, because of the high surface energy and ? electrons being free, graphene can be used in manufacturing many electronics devices. In this paper, the applications of graphene nanoparticles reinforced polymer nanocomposites in the computer and electronics industry are investigated. These nanoparticles have received much attention from researchers and craftsmen, because graphene has unique thermal, electrical and mechanical properties. Its use as a filler in very small quantities substantially enhances the properties of nanocomposites. There are various methods for producing graphene-reinforced polymer nanocomposites. These methods affect the amount of graphene dispersion within the polymer substrate and the final properties of the composite. The application and the properties of graphene-reinforced polymer nanocomposites are discussed along with examples of results published in the papers. To better understand such materials, the applications of these nanocomposites have been investigated in a variety of fields, including batteries, capacitors, sensors, solar cells, etc., and the barriers to the growth and development of these materials application as suggested by the researchers are discussed. As the use of these nanocomposites is developing and many researchers are interested in working on it, the need to study and deal with these substances is increasingly felt.

Publisher

National Library of Serbia

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3