Microstructure and tribological behavior of W-Mo alloy coating on powder metallurgy gears based on double glow plasma surface alloying technology

Author:

Wei D.-B.1,Liang H.-X.2,Li S.-Q.2,Li F.-K.2,Ding F.2,Wang S.-Y.1,Liu Z.-L.2,Zhang P.-Z.1

Affiliation:

1. Nanjing University of Aeronautics and Astronautics, College of Materials Science and Technology, Nanjing, Jiangsu, China + Key Laboratory of Materials Preparation and Protection for Harsh Environment (Nanjing University of Aeronautics and Astronautics), M

2. Nanjing University of Aeronautics and Astronautics, College of Materials Science and Technology, Nanjing, Jiangsu, China

Abstract

In the present paper, plasma surface alloying was implemented on powder metallurgy gears to improve its wear resistance based on double glow plasma surface metallurgy technology. A W-Mo alloy coating was obtained in the process. The morphology, microstructure and phase composition were investigated by SEM, EDS and XRD. The hardness was examined by Vickers hardness test and nanoindentation test. The tribological behavior of powder metallurgy gears before and after plasma surface alloying was evaluated on a ball-on-disc reciprocating sliding tribometer under dry sliding condition at room temperature. The results indicate that the W-Mo alloy coating is homogeneous without defects, which includes deposition layer and interdiffusion layer. The average microhardness of powder metallurgy gears before and after plasma surface alloying is 145.8 HV0.1 and 344.4 HV0.1, respectively; Nano hardness of deposition layer and interdiffusion layer is 5.76 GPa, 14.35 GPa, respectively. The specific wear rate of W-Mo alloy coating is lower than original PM gears. The wear mechanism of W-Mo alloy coating is slight adhesive wear. The W-Mo alloy coating prepared by double glow plasma surface alloying technology can effectively improve wear resistance of powder metallurgy gears.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3