Characterization of Ti6Al4V powders produced by different methods for selective electron beam melting

Author:

Liu Z.1,Huang C.1,Gao C.1,Liu R.2,Chen J.3,Xiao Z.4

Affiliation:

1. South China University of Technology, National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, Guangzhou, China

2. Shenzhen YuanMeng Precision Technology Institute, Shenzhen, China

3. Foshan Sui ZhiBo Novel Materials Technology Materials Co., Ltd. Foshan, China

4. South China University of Technology, National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, Guangzhou, China + South China University of Technology, Guangdong key laboratory for advanced metallic materials processing, Guan

Abstract

Three different types of Ti6Al4V powders produced by electrode induction melting gas atomization (EIGA), plasma rotating electrode process (PREP), and plasma atomization (PA) were compared from these aspects: particle size distribution, particle shape, and microstructure. Theywere characterized by particle size and shape analyzer, scanning electron microscope, and X-ray diffraction. The results show some benefits of using PA Ti6Al4V powder in selective electron beam melting. The particle size distribution of these Ti6Al4V powders were bimodal, and the PA Ti6Al4V powder had the narrowest particle size span. The roundness and elongation, the bluntness index of the most analyzed Ti6Al4V powders were greater than 80%. There were 52%, 81%, and 93% Ti6Al4V powders without satellite, respectively. These particle shape results indicate that EIGA, PRER, and PA Ti6Al4V powders have good sphericity and low content of satellites. The flowability of PA (20.55 s/50 g) is better than that of EIGA (24.80 s/50 g) and PREP (25.76 s/50 g). The microstructure of Ti6Al4V powders was composed of martensite ??.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3