A study of the initial stages of the electrochemical deposition of metals on foreign substrates: Lead and thallium on copper and silver surfaces: General discussion

Author:

Jovicevic Jovan1ORCID,Bewick Alan2

Affiliation:

1. Chemistry Department, Faculty of Natural Sciences & Mathematics, University of Prishtina, Kosovska Mitrovica

2. Chemistry Department, Southampton University, UK

Abstract

The basic applicability of the UPD theory of Gerischer et al. has been confirmed in the case of lead and thallium deposition on copper and silver single crystals, but it was shown also that this is only one of the important factors. It was established that the effect of substrate structure on the mechanism of the UPD monolayer formation plays an important role in the addition to the effect of electronegativity difference between the substrate and depositing atoms. An effect of changing the concentration of depositing metal and specifically adsorbing anion were found and attributed to the changes in the electronegativity of the substrate and underpotential layer as a result of changing the electrode potential. It was conclusively proven by the analysis of the peaked current-time transients obtained by potential step measurements and the very sharp voltammetry peaks, that first order 2D phase transformations are possible in UPD systems. It was also found that the L.S.V. peaks reflecting such processes must not be expected to be free from the influence of slow kinetics. It was established that the 2D crystalline metal-like phases with the closest-packed epitaxial structure exist as a stable, final product in UPD. Moreover, the possibility of higher order 2D transformations in UPD has been given strong support by the evidence of gradual monolayer density change with increasing driving force. Lead UPD on vitreous carbon was found to be the result of substrate reconstruction induced by the repeated deposition and dissolution leading to surface condition changes favoring deposition of the first layer. UPD monolayers on copper and silver surfaces always preceded OPD and had a profound effect on its nucleation overpotential (making it very small indeed) or even changing its character from 3D into 2D (in the case of vitreous carbon substrate). It was also shown that lead and thallium OPD on copper and silver single crystals starts off by charge transfer controlled instantaneous 3D nucleation and subsequent growth of 3D centers. Finally, the results obtained in the experiments performed have shown that electrochemical techniques can prove very suitable in the study of 2D phase transformation kinetics and that their further employment in this field should prove particularly rewarding.

Publisher

National Library of Serbia

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3