Carbothermal reduction of fayalite: Thermodynamic and non-isothermal kinetic analysis

Author:

Li Z.1,Ma G.-J.1,Zou J.-J.1,Zheng D.-L.1,Zhang X.1

Affiliation:

1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, China + Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, China

Abstract

The present paper investigated the thermodynamics and kinetics of carbothermal reduction of fayalite by non-isothermal method combining with thermogravimetric analyzer and applying the Flynn-Wall-Ozawa (FWO) and M?lek models. According to the thermodynamic analysis, the starting temperature of direct reduction reaction of fayalite was 806.79? in the standard state. The indirect reduction reaction could not take place in the standard state. While the volume percentage of CO was higher than 86 vol.% in nonstandard state, the indirect reduction could take place in the range of experimental temperature. Meanwhile, Boudouard reaction could promote the indirect reduction process. The kinetic analysis results showed that at the temperature below 1100?, the main reduction reaction was the direct reduction between fayalite and graphite. With the temperature increasing, the fayalite reacted with CO generated from the gasification of graphite. When the reduction rate increased from 0% to 50%, the activation energy of the reaction increased to 524.41 kJ/mol. Then, the activation energy decreased with the increase of reduction rate. The carbothermal reduction of fayalite was a multistep reaction. The controlling step in the initial stage was the gasification of graphite. As the reaction proceeded, the generated CO provided a good kinetics condition for the carbothermal reduction of fayalite, and the controlling step of the reaction was the nucleation and growth of the metallic iron.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3