The influence of vanadium and titanium oxides in slag on the wetting and corrosion of dense Al2O3 ceramics

Author:

Liu Zhaoyang1,Gao Yuqing2,Pan Songyang2,Zhang Ruinan2,Gao Wei2,Wen Tianpeng1,Ma Beiyue1,Yu Jingkun2

Affiliation:

1. Key Laboratory for Ecological Metallurgy of Multimetallic Ores (Ministry of Education), Northeastern University, Shenyang, Liaoning, China + School of Metallurgy, Northeastern University, Shenyang, Liaoning, China

2. School of Metallurgy, Northeastern University, Shenyang, Liaoning, China

Abstract

The present study investigates the wetting and corrosion behaviour of slags on dense Al2O3 ceramics, focusing on the influence of varying vanadium- and titanium oxide content. Physicochemical properties of the slag were assessed by measuring wetting angles, heights and diameters of the molten slags on the alumina at different temperatures. Microscopic observations and elemental composition analysis were conducted on the interface between the corroded Al2O3 ceramics and the slags. Our findings demonstrated that the V2O3 addition in the slag leads to its oxidation to V2O5, which further reacts with Fe2O3 and MnO to form low melting point phases such as FeVO4 and MnVO6. Consequently, the melting point of the slag decreases significantly, resulting in a decreased wetting angle with the Al2O3 ceramics. The presence of unsaturated alumina in the slag leads to the dissolution of aluminium ions from the ceramics into the slag, which reacts with Fe2O3 and MnO to form spinel phases, contributing to material loss of the ceramics. Infiltration of the slag into the Al2O3 predominantly occurs through the alumina grain boundaries. Two types of infiltration are identified: one involving reactions with alumina to form low melting point phases like Fe2O3 and the other involving inherent low melting point phases such as MnVO6. In contrast, the penetration of SiO2 into the alumina substrate is limited. Additionally, the dissolution of Al2O3 into the slag creates pathways for further infiltration. This study highlights the significant influence of Ti and V content on the physicochemical properties of the slag and provides insight into the corrosion mechanism of Al2O3 ceramics by Ti and V containing slags.

Publisher

National Library of Serbia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3