Some Milne’s rule type inequalities in quantum calculus

Author:

Sial Ifra1,Budak Hüseyin2,Ali Muhammad3

Affiliation:

1. School of Sciences, Jiangsu University, Zhenjiang, China

2. Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce, Turkey

3. School of Mathematical Sciences, Nanjing Normal University, China

Abstract

The main goal of the current study is to establish some new Milne?s rule type inequalities for single-time differentiable convex functions in the setting of quantum calculus. For this, we establish a quantum integral identity and then we prove some new inequalities of Milne?s rule type for quantum differentiable convex functions. These inequalities are very important in Open-Newton?s Cotes formulas because, with the help of these inequalities, we can find the bounds of Milne?s rule for differentiable convex functions in classical or quantum calculus. The method adopted in this work to prove these inequalities are very easy and less conditional compared to some existing results. Finally, we give some mathematical examples to show the validity of newly established inequalities.

Publisher

National Library of Serbia

Reference19 articles.

1. Hermite, C. Sur deux limites d’une integrale de finie. Mathesis. 1883, 82.

2. Hadamard, J. Etude sur les fonctions entiees et en particulier d’une fonction consideree par Riemann. J. Math. Pures Appl. 1893, 58, 171-215.

3. Dragomir, S.S.; Agarwal, P.R. two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoid formula. Appl. Math. Lett. 1998, 11, 91-95.

4. Kirmaci, U. S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput., 2004, 147, 137-146.

5. Qi, F.; Xi, B.Y. Some Hermite-Hadamard type inequalities for differentiable convex functions and applications. Hacet. J. Math. Stat. 2013, 42, 243-257.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3