New trends in basic oxygen furnace dephosphorization

Author:

Keskinkilic E.1

Affiliation:

1. Department of Metallurgical and Materials Engineering, Atilim University, Ankara, Turkey

Abstract

Except for special grades of steel where it is used as an alloying element, phosphorus is regarded as an impurity that must be removed. Considering the conventional integrated iron and steelmaking, there are primarily two processes for phosphorus removal. The first is a hot metal dephosphorization (DeP) process that is applied to a blast furnace for hot metal before the steelmaking process. The second is the basic oxygen furnace steelmaking (BOS), a unique method primarily used for steelmaking, with the exception of stainless steels. Hot metal phosphorus content has a direct impact on BOS. An increase of phosphorus in hot metal is mainly related to the use of high P2O5 containing iron ores. In the current literature review, new trends of phosphorus removal in converter steelmaking are outlined. The double-slag practice was reported to be successful when hot metal P content was larger than 0.100%. It was indicated that the tapping temperature was critical for the production of low-phosphorus grades for which maximum allowable P content was 0.007% and that high tapping temperatures should be avoided. The tap-to-tap time for the double-slag process was slightly longer than the conventional converter steelmaking. It was further reported that the double-slag practice would be more economical than an establishment of a separate hot metal dephosphorization unit, if low-phosphorus grades did not have a significant share in the product mix of a steelmaking company. Endpoint phosphorus prediction was one of the important recent trends of converter steelmaking. A mixed injection of CO2-O2 to a basic oxygen furnace was applied to enhance dephosphorization, and promising results were reported. Unfortunately, a successful process for recycling of BOS dephosphorization slag has not been reported yet.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3