Ferrofluid lubrication of a parallel plate squeeze film bearing

Author:

Shah Rajesh1,Bhat M.V.2

Affiliation:

1. Department of Mathematics, Nirma Institute of Technology, Sarkhej-Gandhinagar Highway, Ahmedabad , Gujarat State, India

2. Riddhi Complex, Near jodhpur Village, Ahmedabad, Gujarat State, India

Abstract

We derived a Reynolds type equation for a ferrofluid lubrication in a squeeze film between two circular plates using Jenkins model and considering combined effects of rotation of the plates, anisotropic permeability in the porous matrix and slip velocity at the interface of porous matrix and film region. We used it to study the case of a parallel-plate squeeze film bearing. Expressions were obtained for dimensionless pressure, load capacity and response time. Computed values were displayed some in tabular form and some in graphical form. The load capacity decreased with increasing values of the radial permeability and attained a minimum when the plates rotated in the opposite directions with nearly the same speed. It increased with increasing values of the axial permeability or material constant of Jenkins model and attained a maximum when the value of the material constant was near unity. It increased or decreased for increasing values of the speed of rotation of the upper plate according as the value of the material constant is zero or not. The response time slowly decreased with increasing values of the radial permeability, speed of rotation of upper plate or the material constant. But, it increased with increasing values of the axial permeability and attained a maximum when the plates rotated in opposite directions with nearly the same speed. Anisotropic permeability affected the bearing characteristics considerably.

Publisher

National Library of Serbia

Subject

Applied Mathematics,Mechanical Engineering,Computational Mechanics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3