Elucidation of the role of glutamine synthetase seed isoform GLN1;5 in Arabidopsis thaliana (L.) with a reverse genetics approach

Author:

Dragicevic Milan1ORCID,Cukovic Katarina2,Zdravkovic-Korac Snezana1ORCID,Simonovic Ana1ORCID,Bogdanovic Milica1ORCID,Todorovic Sladjana1

Affiliation:

1. Institute for Biological Research “Siniša Stanković“, Belgrade

2. Institute for Multidisciplinary Research, Belgrade

Abstract

Glutamine synthetase (E.C. 6.3.1.2) is a key enzyme of plant nitrogen metabolism that assimilates ammonia into glutamine. The Arabidopsis thaliana genome encodes one chloroplastic (GLN2) and five cytosolic (GLN1;1 ? GLN1;5) isoforms with different expression patterns, kinetic properties, regulation and functions. Physiological roles of different isoforms have been elucidated mainly by studying knockout mutants. However, the role of GLN1;5, which is expressed in dry seeds, remains unknown. To clarifty the function of GLN1;5, we studied a GLN1;5 knockout line (GLN1;5KO) homozygous for T-DNA insertion within the GLN1;5. GLN1;5 deficiency results in a phenotype with slightly delayed bolting and fewer siliques. The dry weight of GLN1;5KO seeds was 73.3% of wild-type (WT) seed weight, with seed length 90.9% of WT seeds. Finally, only 18.33% of the mutant seeds germinated in water within 10 days in comparison to 34.67% of WT seeds. KNO3 strongly stimulated germination of both GLN1;5KO and WT seeds, while germination in the presence of increasing NH4Cl concentrations potentiated the differences between the two genotypes. It can be concluded that GLN1;5 activity supports silique development and grain filling and that it has a role in ammonium reassimilation in the seed, as well as assimilation and/or detoxification of ammonium from the environment. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. ON173024 and Grant no. ON173015]

Publisher

National Library of Serbia

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3