Impact of different zinc concentrations on growth, yield, fruit quality, and nutrient acquisition traits of tomato (Lycopersicon esculentum L.) grown under salinity stress

Author:

Rabbi Rakibul1,Aktar Nayema2,Mahamud Asif1,Paul Newton3,Halder Dipok4,Imran Shahin5

Affiliation:

1. Department of Agricultural Chemistry, Khulna Agricultural University, Khulna, Bangladesh

2. BINA Substation Satkhira, Bangladesh Institute of Nuclear Agriculture, Mymensingh, Bangladesh

3. Department of Agronomy, Khulna Agricultural University, Khulna, Bangladesh

4. On-Farm Research Division, Bangladesh Agricultural Research Institute, Gopalganj, Bangladesh

5. Department of Agronomy, Khulna Agricultural University, Khulna, Bangladesh + Institute of Plant Science and Resources, Okayama University, Chuo, Kurashiki, Japan

Abstract

Salinity stress affects plant growth, development, nutrient uptake, and yield. Applications of micronutrients, specifically zinc (Zn), can mitigate the harmful consequences of salt stress. During the winter season of 2022, an experiment was conducted in the net house of BINA substation Satkhira, Bangladesh, to examine the impact of different Zn concentrations (5 and 10 kg ha-1) on tomato (Lycopersicon esculentum L.) growth, yield, fruit quality, and nutrient acquisition abilities under different salt stress (SS) conditions (SS0.5%, SS1.0%, and SS1.5% NaCl). The result of the study showed that different stress conditions lowered the plant height, the number of branches per plant, flower clusters, and fruits per plant, plant yield, vitamin C, protein and lycopene contents, and the acquisition of different nutrients, i.e., nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), zinc (Zn) and iron (Fe). The application of 10 kg Zn ha-1 (Zn10) increased all previously mentioned parameters in both saline and usual conditions. On the other hand, a decrease in the amount of Na in fruit was observed when Zn application was increased from 5 to 10 kg ha-1. Plant Na/K ratios were consequently lowest at the highest Zn concentration. Therefore, the findings indicate that Zn application improves tomato growth, yield, fruit quality, and nutrient acquisition traits by mitigating the negative impacts of saline environments.

Publisher

National Library of Serbia

Reference63 articles.

1. El Sabagh A, Hossain A, Barutcular C, Iqbal MA, Islam MS, Fahad S, Sytar O, Ciğ F, Meena RS, Erman M. Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: an outlook of arid and semi-arid regions. In: Fahad S, Hasanuzzaman M, Alam M, Ullah H, Saeed M, Khan IA, Adnan M, editors.. Environment, Climate, Plant and Vegetation Growth. Cham: Springer; 2020:503-33. https://doi.org/10.1007/978-3-030-49732-3_20

2. Nadeem F, Azhar M, Anwar-ul-Haq M, Sabir M, Samreen T, Tufail A, Awan HU, Juan W. Comparative response of two rice (Oryza sativa L.) cultivars to applied zinc and manganese for mitigation of salt stress. J Soil Sci Plant Nutr. 2020;20:2059-72. https://doi.org/10.1007/s42729-020-00275-1

3. Shrivastava P, Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci. 2015;22(2):123-31. https://doi.or/10.1016/j.sjbs.2014.12.001

4. Imran S, Sarker P, Hoque MN, Paul NC, Mahamud MA, Chakrobortty J, Tahjib-Ul-Arif M, Latef AA, Hasanuzzaman M, Rhaman MS. Biochar actions for the mitigation of plant abiotic stress. Crop Pasture Sci. 2022;74(2):6-20. https://doi.org/10.1071/CP21486

5. Rhaman MS, Tania SS, Imran S, Rauf F, Kibria MG, Ye W, Hasanuzzaman M, Murata Y. Seed priming with nanoparticles: An emerging technique for improving plant growth, development, and abiotic stress tolerance. J Soil Sci Plant Nutr. 2022;22(4):4047-62. https://doi.org/10.1007/s42729-022-01007-3

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3