Experimental and modeling studies of mass transfer and hydrodynamics in a packed bed absorption column for CO2 - water system

Author:

Balaban Dario1ORCID,Nikolovski Branislava2ORCID,Perusic Mitar3ORCID,Tadic Goran3ORCID

Affiliation:

1. University of Novi Sad, Faculty of Technology Novi Sad, Novi Sad, Serbia + University of East Sarajevo, Faculty of Technology Zvornik, Department of Process Engineering, Zvornik, Republic of Srpska, Bosnia and Herzegovina

2. University of Novi Sad, Faculty of Technology Novi Sad, Novi Sad, Serbia

3. University of East Sarajevo, Faculty of Technology Zvornik, Department of Process Engineering, Zvornik, Republic of Srpska, Bosnia and Herzegovina

Abstract

This paper presents research on hydrodynamics and mass transfer in a packed absorption column. Experimental data on dry column pressure drop, flooding point, and efficiency of absorption of CO2 in water is obtained on a lab-scale absorption column packed with Raschig rings. Auxiliary parts of equipment together with chemical analyses provide simple monitoring and collecting the data. All obtained data were used to test different mathematical models for a given problem, i.e. for determination of the dry column pressure drop, flooding point and the overall gas transfer unit height. For dry column pressure drop, models developed primarily for packed columns described the data the best, with the Billet model generating a 6.54 % mean error, followed by Mackowiak and Stichlmair models. In flooding point calculations, empirical models were tested and models of Lobo, Leva and Takahshi gave the best results. Mass transfer (absorption) experiments gave expected results, since absorption efficiency increased with the increase in the liquid/gas flow rate ratio, i.e. with approaching the flooding point. The Onda?s model was used to calculate partial mass transfer coefficients in liquid and gas phases based on which the height of the overall gas transfer unit was estimated and subsequently compared with the experimental data. Deviation of calculated and experimental results for the height of the overall gas transfer unit is in the expected range of 0-20 %, with mean value of 15.5 %. In conclusion, the available models for determination of the investigated hydrodynamics and mass transfer parameters in packed absorption columns gave adequate results in comparison to the experimental values.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3