Combined neural networks and predictive control for heat exchanger networks operation

Author:

Carvalho Carolina1,Carvalho Esdras2,Ravagnani Mauro1

Affiliation:

1. Department of Chemical Engineering, State University of Maringá (UEM), Bloco D, Maringá, Brazil

2. Department of Mathematics, State University of Maringá (UEM), Bloco F, Maringá, Brazil

Abstract

Optimal operation of integrated heat exchangers is a challenging task in the field of process control due to system nonlinearities, disturbances and adequate model identification. This paper describes the design of an advanced neural network predictive control (NNPC) applied to a heat exchanger network. A case study with two hot and one cold streams, through three counter-current heat exchangers is used to test the proposed strategy. A lumped dynamic model is built based on the concept of multi-cells topology (mixed tanks), where the hot and cold cells are connected by a wall element throughout the heat exchanger length. Each cell is assumed perfectly mixed and all physical properties are constant. A distributed behavior is achieved by increasing the number of cells. The main assumptions of the lumped model are constant temperature in each cell, heat exchanger volume and area equally distributed between cells and negligible heat loss to the environment. The predictive controller relies on a neural-based model of the plant that is used to identify the system and to predict future performance over a predefined horizon. Results were compared to a traditional controller, and the control performance was improved when compared to the Ziegler-Nichols tuning method.

Publisher

National Library of Serbia

Subject

General Chemical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3