Dynamic optimization of low-density polyethylene production in tubular reactor under thermal safety constraint

Author:

Azmi A.1,Sata S.A.1,Rohman F.S.1,Aziz N.1

Affiliation:

1. School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan Nibong Tebal, Seberang Perai Selatan, Penang, Malaysia

Abstract

A commercial low-density polyethylene (LDPE) which is produced by the polymerization process of ethylene in the presence of initiators in a long tubular reactor is the most widely used in polymer industry. The highly exothermic nature of the LDPE polymerization process and the heating-cooling prerequisite in the tubular reactor can lead to various problems, particularly safety in terms of thermal runaway and productivity, i.e., decreasing monomer conversion. Therefore, model-based optimization of an industrial LDPE tubular reactor under thermal safety consideration is required to be implemented. A first principle model for this process is developed and validated using industrial data. Mass and energy balances have been derived from kinetics of LDPE polymerization. Thereafter, an expression of reactor temperature under critical condition is developed and incorporated in the reference model for the thermal safety study. In order to ensure the process is thermally safe and meets the desired product grade, the constrained dynamic optimization is proposed to maximize the conversion of the monomer using orthogonal collocation (OC). The dynamic optimization result shows that the maximum reaction temperature under critical condition constraint can be satisfied by optimizing the reactor jacket. Moreover, it is achieved without jeopardizing the monomer conversion and the product grade.

Publisher

National Library of Serbia

Subject

General Chemical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3