Effect of nano- and micro-alumina fillers on some properties of poly(methyl methacrylate) denture base composites

Author:

Kundie Fathie1,Azhari Che2,Ahmad Zainal3

Affiliation:

1. The National University of Malaysia, Faculty of Engineering & Built Environment, Department of Mechanical & Materials Engineering, Bangi, Selangor, Malaysia + College of Medical Technology, Department of Dental Technology, Misurata, Libya

2. The National University of Malaysia, Faculty of Engineering & Built Environment, Department of Mechanical & Materials Engineering, Bangi, Selangor, Malaysia

3. Universiti Sains Malaysia, School of Materials and Mineral Resources Engineering, Nibong Tebal, Pulau Penang, Malaysia

Abstract

This research investigated the effects of alumina (Al2O3) micro- and nano-particles on poly(methyl methacrylate) (PMMA) denture base. Al2O3 was surface treated using (3-methacryloxypropyl)trimethoxysilane (?-MPS), added to methyl methacrylate (MMA), and mixed with PMMA powder. The filler volume fractions in the micro-composites were 0.5, 1, 2, 5 and 7 wt. %, whereas those in the nano-composites were 0.13, 0.25, 0.5, 1, 2 and 5 wt. %. The treated fillers were examined using Fourier transform infrared spectroscopy (FTIR). The influence of filler size and loading on mechanical properties was studied using fracture toughness and flexural tests. The thermal stability of the PMMA/Al2O3 composites was investigated using thermogravimetric analysis (TGA). In addition, the water absorption and solubility characteristic of the prepared composites was also investigated. The FTIR spectra showed new absorption bands, indicating the occurrence of surface modifications. Both micro- and nanoscale particles showed increased fracture toughness. The maximum value of 2.02 MPa?m1/2 was achieved with the addition of 0.5 wt. % nano-Al2O3, which accounts for a 39 % increase. In contrast to the flexural strength, the flexural modulus improved with increasing filler content. The micro-composites showed higher thermal stability than nano-composites. The water absorption and solubility of the prepared composites were slightly higher than those of the control. The use of low concentrations of Al2O3 nanoparticles may be of considerable interest in future studies to improve the mechanical properties of PMMA denture base.

Publisher

National Library of Serbia

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3