Statistical convergence of bivariate generalized bernstein operators via four-dimensional infinite matrices

Author:

Özger Faruk1,Ansari Khursheed2

Affiliation:

1. Department of Engineering Sciences, İzmir Katip Çelebi University, İzmir, Turkey

2. Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia

Abstract

Our main aim in this work is to construct an original extension of bivariate Bernstein type operators based on multiple shape parameters to give an application of four-dimensional infinite matrices to approximation theory, and prove some Korovkin theorems using two summability methods: a statistical convergence method which is stronger than the classical case and a power series method. We obtain the rate of generalized statistical convergence, and the rate of convergence for the power series method. Moreover, we provide some computer graphics to numerically analyze the efficiency and accuracy of convergence of our operators and obtain corresponding error plots. All the results that have been obtained in the present paper can be extended to the case of n-variate functions.

Publisher

National Library of Serbia

Subject

General Mathematics

Reference42 articles.

1. SN. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités, Comm. Soc. Math. Kharkow, (1912) 13, 1-2.

2. SN. Bernstein, Sur les recherches récentes relatives à la meilleure approximation des fonctions continues par les polynomes, Proc. of 5th Inter. Math. Congress, (1912) 1, 256-266.

3. NL. Braha, Some properties of new modified Szász-Mirakyan operators in polynomial weight spaces via power summability methods, Bull Math Anal Appl. 10 (3) (2018), 53-65.

4. NL. Braha, Some properties of Baskakov-Schurer-Szasz operators via power summability methods, Quaestiones Mathematicae 42(10) (2019), 1411-1426.

5. NL. Braha and U. Kadak, Approximation properties of the generalized Szasz operators by multiple Appell polynomials via power summability method, Mathematical Methods in the Applied Sciences 43(5) (2020), 2337-2356.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3