Wheat straw delignification by Djerkandera adusta (Willd.) P. Karst. 1879: The effect on enzymatic hydrolysis

Author:

Djokic Ivana1,Knezevic Aleksandar1ORCID,Savkovic Zeljko1ORCID,Vukojevic Jelena1ORCID

Affiliation:

1. University of Belgrade, Faculty of Biology, Belgrade, Serbia

Abstract

The use of lignocellulosic materials in the production of biofuels and biochemicals holds a huge prospect since wood and agricultural residues represent the most abundant global source of renewable biomass. However, delignification is an inevitable step in lignocellulose pre-treatment rendering the cellulose and hemicellulose more exposed to enzymatic saccharification. The aim of this study was to assess the potential of different Bjerkandera adusta strains to enhance the efficiency of enzymatic saccharification of wheat straw after solid-state culturing. Three white-rot fungal strains of Bjerkandera adusta (Willd.) P. Karst. 1879, (BEOFB1601, BEOFB1602 and BEOFB1603) were used for partial delignification of wheat straw during solid-state cultivation. Activity of ligninolytic enzymes were measured spectrophotometrically while wheat straw residues were used for determination of hemicelluloses, cellulose and lignin contents. Enzymatic hydrolysis of pre-treated wheat straw was conducted using commercial cellulase in loadings of 60 U g-1 of solid substrate. The content of reducing sugars was measured calorimetrically using 1,4-dinitrosalycilic acid. Enzymes predominantly responsible for lignin degradation by tested fungal strains were peroxidases. The highest rate of lignin degradation was noticed in samples pretreated with the strain BEOFB1601 (42.3 ? 3.7%). The highest reducing sugars yield (8.6 ? 0.3 gGE L-1) was achieved after enzymatic saccharification of samples pre-treated with the strain BEOFB1601, as the most selective lignin degrader. The obtained results suggest that fungal culturing as a bio?logical pre-treatment method can be significantly strain specific. A key mechanism which enhances convertibility of carbohydrates is selective lignin degradation of the biomass.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3