A new two-step iteration method for discrete ill-posed problems and image restoration

Author:

Cui Jingjing1,Peng Guohua1,Lu Quan1,Huang Zhengge2

Affiliation:

1. Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi’an, Shaanxi, P.R. China

2. Faculty of Science, Guangxi University for Nationalities, Nanning, Guangxi, PR China

Abstract

In this study, for the augmented linear system of discrete ill-posed problems we establish a new two-step (NTS) iteration method containing a parameter and a parameter matrix, which is based on the Hermitian and skew-Hermitian splitting (HSS) and the upper and lower triangular splitting (ULT) of the coefficient matrix. Then, we theoretically study its convergence properties and determine its optimal iteration parameters. It is seen that the NTS method converges faster when the parameters are chosen properly. Experimental examples are carried out to further validate the effectiveness and accuracy of the new method compared to the newly developed methods in terms of the numerical performance and image recovering quality.

Publisher

National Library of Serbia

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3