The effect of sintering temperature on mesoporous structure of WO3 doped TiO2 powders

Author:

Petrovic Srdjan1ORCID,Rozic Ljiljana1,Stojadinovic Stevan2,Grbic Bosko1,Vasilic Rastko2ORCID,Vukovic Zorica1,Radic Nenad1

Affiliation:

1. IChTM-Department of Catalysis and Chemical Engineering, Belgrade

2. Faculty of Physics, Belgrade

Abstract

In this study, WO3 doped TiO2 powders were synthesized via sol-gel method combined with a hydrothermal process. The effect of sintering temperature on mesoporous structure and catalytic activities of these powders were investigated. The physical analysis via X-ray diffraction indicates that prepared samples are a mixture of anatase and rutile TiO2 phases. X-ray peak analysis is used to evaluate the crystallite size and lattice strain by the Williamson-Hall analysis. Considering all the reflections of the anatase phase the lattice strain ranging from c = 9.505 to c = 9.548 is calculated, suggesting that microstrain decreases when calcination temperature increases. N2 adsorption-desorption analysis shows that the surface area and pore volume decrease with increasing temperature and that WOx-TiO2 powders primarily consist of mesopores. Sintering temperature induced a change in textural properties causing a systematic shift towards larger mesopores. Simultaneously, photoactivity in decolorization of methyl orange increases with increasing calcination temperature up to 700?C, followed by significant decrease with its further increase.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Condensed Matter Physics,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3