The co-dynamics of malaria and tuberculosis with optimal control strategies

Author:

Alzahrani A.K.1,Khan Muhammad2

Affiliation:

1. Faculty of Science, Department of Mathematics, King Abdulaziz University, Jeddah, KSA

2. Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa

Abstract

Malaria and Tuberculosis are both the severe and causing death diseases in the world. The occurrence of TB and malaria as a coinfection is also an alarming threat to the human. Therefore, we consider a mathematical model of the dynamics of malaria and tuberculosis coinfection and explore its theoretical results. We formulate the model and obtain their basic properties. We show that at the disease free case each model is locally asymptotically stable, when the basic reproduction number less than unity. Further, we analyze the phenomenon of backward bifurcation for coinfection model. For the sub models, we present the local stability for the disease free case whenever the basic reproduction number less than 1. Further, an optimal control problem is presented to investigate the dynamics of malaria and tuberculosis coinfection. The numerical results with different scenarios are presented. The mathematical model with and without control problemare solved numerically using the Runge-Kutta backward and forward scheme of order four.

Publisher

National Library of Serbia

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3