Influence of iron ore concentrate on the characteristics of sintering and reduction of sinter

Author:

Guo H.1,Shen F.-M.2,Jiang X.3,Xiang D.-W.2,Zheng H.-Y.2

Affiliation:

1. Hebei North University, Zhangjiakou, Hebei, China

2. School of Metallurgy, Northeastern University, Shenyang, Liaoning, China

3. School of Metallurgy, Northeastern University, Shenyang, Liaoning, Chinа

Abstract

As Australia is the main iron ore importing country for China, the abundant mineral resources of Australia are the primary raw materials for the sintering process. To better understand the properties of different iron ores from Australia and then guide the sintering process, this study selected four types of Australian ore and one type of domestic ore, and their properties were investigated under different conditions. The experiment of single iron ore sintering was studied to examine the influence of different iron ores on the metallurgical properties of sinter. From this study, the following results were obtained: GG showed poor fluidity and higher assimilability temperature, but the bonding phase strength was the highest; YD showed better fluidity and lower assimilability temperature, whereas SJY (domestic ore) showed better fluidity and higher bonding phase strength, and lower assimilability temperature. The influence mechanism of iron ore on the fluidity was further analyzed by using SEM and ion theory of slag. With the increase SiO2 content of iron ore, the fluidity index increased, the main reason was that the amount of liquid phase increased and the melting point decreased during the sintering. However, an excessive amount of SiO2 caused the decrease of fluidity index of iron ore; the main reason was that the fluidity of the liquid phase itself decreased and secondary hematite appeared. In the case of the higher SiO2 content of iron ore, the main bonding phase was calcium silicate. With the decrease of SiO2 content, the calcium silicate transformed into calcium ferrite. The main reason for this was that the Gibbs free energy of calcium ferrite and dicalcium ferrite (2CaO?SiO2) was higher than that of calcium silicate in the temperature ranges of 400-1600 K. The reduction degree of YD was the highest in all the cases and that of GG was the lowest. Activation energies of 5.39, 3.14, 3.51, 4.47 and 2.92 kJ/mol were obtained for the reduction of GG, PB, BH, SJY, and YD, respectively. In all the cases, the reaction corresponded to the model function of F1(?), and the integral form was -ln(1-?)=kt. Through this investigation, it could be concluded that the most appropriate ore category for sinter pot was YD.

Publisher

National Library of Serbia

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mineralogical properties and co-sintering characteristics of fluxed iron ore with magnetite concentrates;Journal of Iron and Steel Research International;2023-07-25

2. Improving the sinter productivity with increased specular iron ore in sinter blend;Journal of Mining and Metallurgy, Section B: Metallurgy;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3