Genotyping of potato samples from the GenAgro ICG SB RAS collection using DNA markers of genes conferring resistance to phytopathogens

Author:

Totsky I. V.1ORCID,Rozanova I. V.2,Safonova A. D.3,Batov A. S.3,Gureeva Yu. A.3,Khlestkina E. K.2ORCID,Kochetov A. V.4ORCID

Affiliation:

1. Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Siberian Research Institute of Plant Production and Breeding – Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

2. Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

3. Siberian Research Institute of Plant Production and Breeding – Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

4. Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

Abstract

Wart (a disease caused by Synchytrium endobioticum) and golden cyst potato nematode (Globodera rostochiensis), which parasitize the roots of the host plant, cause significant damage to potato crop. Both of these disease factors are quarantined in the Russian Federation, and each registered variety is tested for resistance to their most common races and pathotypes. The main method of opposing such diseases is by the development of resistant varieties. An important step in this process is the selection of resistant genotypes from the population and the estimation of the resistance of hybrids obtained by crosses during the breeding process. Conducting a permanent phenotypic evaluation is associated with difficulties, for example, it is not always possible to work with pathogens, and phenotypic evaluation is very costly and time consuming. However, the use of DNA markers linked to resistance genes can significantly speed up and reduce the cost of the breeding process. The aim of the study was to screen the GenAgro potato collection of ICG SB RAS using known diagnostic PCR markers linked to golden potato cyst nematode and wart resistance. Genotyping was carried out on 73 potato samples using three DNA markers 57R, CP113, Gro1-4 associated with nematode resistance and one marker, NL25, associated with wart resistance. The genotyping data were compared with the data on the resistance of the collection samples. Only the 57R marker had a high level of correlation (Spearman R = 0.722008, p = 0.000000, p < 0.05) between resistance and the presence of a diagnostic fragment. The diagnostic efficiency of the 57R marker was 86.11 %. This marker can be successfully used for screening a collection, searching for resistant genotypes and marker-assisted selection. The other markers showed a low correlation between the presence of the DNA marker and resistance. The diagnostic efficiency of the CP113 marker was only 44.44 %. Spearman’s correlation coefficient (Spearman R = –0.109218, p = 0.361104, p < 0.05) did not show significant correlation between resistance and the DNA marker. The diagnostic efficiency of the NL25 marker was 61.11 %. No significant correlation was found between the NL25 marker and resistance (Spearman R = –0.017946, p = 0.881061, p < 0.05). The use of these markers for the search for resistant samples is not advisable.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3