Introgressions of Vitis rotundifolia Michx. to obtain grapevine genotypes with complex resistance to biotic and abiotic stresses

Author:

Volynkin V. A.1ORCID,Likhovskoi V. V.1ORCID,Vasylyk I. A.1ORCID,Rybachenko N. A.1ORCID,Lushchay E. A.1ORCID,Gorislavets S. M.1ORCID,Volodin V. A.1ORCID,Risovannaya V. I.1ORCID,Potokina E. K.2ORCID

Affiliation:

1. All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences

2. All-Russian National Research Institute of Viticulture and Winemaking “Magarach” of the Russian Academy of Sciences; Saint Petersburg State Forest Technical University

Abstract

Vitis rotundifolia Michx. is one of the species of the family Vitaceae, with resistance to both biotic and abiotic stresses. The present study reports new scientific knowledge about the inheritance of resistance to downy mildew, powdery mildew and frost by V. vinifera varieties from V. rotundifolia. Recombinant lines of three hybrid populations from the crossing of the maternal genotype ♀M. 31-77-10 with V. rotundifolia hybrids were used as the object of the study. As a result of laboratory screening, more than 40 % of recombinants of the ♀M. 31-77-10× ×[DRX-M5-734+DRX-M5-753+DRX-M5-790] population showed a high degree of frost resistance (–24 °C), while 6 % of transgressive recombinants were characterized by a very high degree of resistance (–27 °С). The maternal genotype ♀M. 31-77-10 does not carry alleles of resistance to powdery mildew at the Run1 locus and in the field suffers from powdery mildew much more than the paternal genotypes. The prevalence of powdery mildew on vegetative organs in the three recombinant populations over the years varies on average between 3.2–17.1, 0.3–17.7 and 0.6–5.2 %, respectively. As a result, almost all recombinant genotypes that received a resistant allele from the paternal genome are highly resistant to powdery mildew.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3