Assessing cell lines with inducible depletion of cohesin and condensins components through analysis of metaphase chromosome morphology

Author:

Yunusova A. M.1,Smirnov A. V.1,Pristyazhnuk I. E.1,Shnaider T. A.1,Maltseva E. K.2,Afonnikova S. D.1,Gusev O. A.3,Battulin N.  R.4

Affiliation:

1. Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

2. Novosibirsk State University

3. Life Improvement by Future Technologies (LIFT) Center; Kazan Federal University; Endocrinology Research Center

4. Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Abstract

One of the most productive strategies for finding the functions of proteins is to study the consequences of loss of protein function. For this purpose, cells or organisms with a knockout of the gene encoding the protein of interest are obtained. However, many proteins perform important functions and cells or organisms could suddenly lose fitness when the function of a protein is lost. For such proteins, the most productive strategy is to use in ducible protein degradation systems. A system of auxin-dependent protein degradation is often implemented. To use this system, it is sufficient to introduce a transgene encoding a plant-derived auxin-dependent ubiquitin ligase into mammalian cells and insert a sequence encoding a degron domain into the gene of interest. A crucial aspect of development of cell lines engineered for inducible protein depletion is the selection of cell clones with efficient  auxin-dependent degradation of the protein of interest. To select clones induced by depletion of the architectural chromatin proteins RAD21 (a component of the cohesin complex) and SMC2 (a component of the condensin complex), we propose to use the morphology of metaphase chromosomes as a convenient functional test. In this work, we obtained a series of clones of human HAP1 cells carrying the necessary genetic constructs for inducible depletion of RAD21 and SMC2. The degradation efficiency of the protein of interest was assessed by flow cytometry, Western blotting and metaphase chromosome morphology test. Based on our tests, we showed that the clones we established with the SMC2 degron effectively and completely lose protein function when induced by auxin. However, none of the HAP1 clones we created with the RAD21 degron showed complete loss of RAD21 function upon induction of degradation by auxin. In addition, some clones showed evidence of loss of RAD21 function even in the absence of induction. The chromosome morphology test turned out to be a convenient and informative method for clone selection. The results of this test are in good agreement with flow cytometry analysis and Western blotting data.

Publisher

Institute of Cytology and Genetics, SB RAS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3