New genetic tools for plant defense against parasitic nematodes

Author:

Kochetov A. V.1ORCID,Gavrilenko T. A.2ORCID,Afanasenko O. S.3ORCID

Affiliation:

1. Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

2. Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

3. Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; All-Russian Institute of Plant Protection

Abstract

Nematodes belong to economically important pests. Here we reviewed the recent data on molecular mechanisms of plant resistance to cyst and gall nematodes including the most devastating Globodera rostochiensis, G. pallida, Heterodera schachtii, Meloidogyne chitwoodi, and M. incognita. The Golden Potato Cyst Nematode (G. rostochiensis, GPCN) may be taken as an example of an economically important pest: in Russia, it occurs in 61 regions with a total area of 1.8 million ha and may cause the yield loss from 19 to 90 %. The biological characteristics of sedentary nematodes makes their agrotechnical control problematic, i.e. the GPCN cysts remain dormant in soil for many years until a susceptible host appears, whereas nematicides are either toxic or inefficient. Introgression of resistance genes (R-genes) from related cultivated or wild species is likely to be the most appropriate way for their biocontrol. The life cycle of sedentary nematodes is based on juveniles’ penetration into the host root where they reprogram plant cells into a syncytium or the so-called ‘giant cells’ and inhibit the plant defense response. Molecular mechanisms of plant-nematode interaction are unusual and this phenomenon provides a very interesting model for the investigation of plant morphogenesis control as well as for the development of new genetic instruments of biocontrol. Here we reviewed recent publications on plant parasitic nematode effectors used for hijacking of the plant immune system, data on R-genes and molecular mechanisms of their activities. In addition, host-induced gene silencing (HIGS) is discussed as a perspective mechanism for nematode biocontrol. HIGS is based on the RNA interference in the cells of the host plant addressed against the nematode genes important for their development and productivity. Several recent investigations demonstrated efficiency of HIGS against sedentary nematodes.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3