Replication timing in Drosophila and its peculiarities in polytene chromosomes

Author:

Kolesnikova T. D.1,Antonenko O. V.2,Makunin I. V.3

Affiliation:

1. Institute of Molecular and Cellular Biology, SB RAS. Novosibirsk State University.

2. Institute of Molecular and Cellular Biology, SB RAS.

3. Institute of Molecular and Cellular Biology, SB RAS; Research Computing Centre, The University of Queensland.

Abstract

Drosophila melanogaster is one of the popular model organisms in DNA replication studies. Since the 1960s, DNA replication of polytene chromosomes has been extensively studied by cytological methods. In the recent two decades, the progress in our understanding of DNA replication was associated with new techniques. Use of fluorescent dyes increased the resolution of cytological methods significantly. High-throughput methods allowed analysis of DNA replication on a genome scale, as well as its correlation with chromatin structure and gene activi ty. Precise mapping of the cytological structures of polytene chromosomes to the genome assembly allowed comparison of replication between polytene chromosomes and chromosomes of diploid cells. New features of replication characteristic for D. melanogaster were described for both diploid and polytene chromosomes. Comparison of genomic replication profiles revealed a significant similarity between Drosophila and other well-studi ed eukaryotic species, such as human. Early replication is often confined to intensely transcribed gene-dense regions characterized by multiple replication initiation sites. Features of DNA replication in Drosophila might be explained by a compact genome. The organization of replication in polytene chromosomes has much in common with the organization of replication in chromosomes in diploid cells. The most important feature of replication in polytene chromosomes is its low rate and the dependence of S-phase duration on many factors: external and internal, local and global. The speed of replication forks in D. melanogaster polytene chromosomes is affected by SUUR and Rif1 proteins. It is not known yet how universal the mechanisms associated with these factors are, but their study is very promising.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3