DNA metabarcoding of benthic algae and associated eukaryotes from Lake Baikal in the face of rapid environmental changes

Author:

Bukin Yu. S.1ORCID,Kravtsova L. S.2ORCID,Peretolchina T. E.2ORCID,Fedotov A. P.2ORCID,Tupikin A. E.3ORCID,Kabilov M. R.3ORCID,Sherbakov D. Yu.4ORCID,Mincheva E. V.2ORCID

Affiliation:

1. Limnological Institute of the Siberian Branch of the Russian Academy of Sciences; Irkutsk State University

2. Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

3. Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences

4. Limnological Institute of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Abstract

Here we report new data describing the biodiversity of phytobenthic communities based on DNA-metabarcoding using the 18S rDNA marker and the Illumina MiSeq system. The study was initiated due to the blooming of filamentous algae (mainly of the genus Spirogyra) and cyanobacteria in the coastal zone of Lake Baikal under climate change and anthropogenic impact. The composition and taxonomic diversity of algae and other organisms associated with them on different sites of Lake Baikal (near Bolshoi Ushkaniy Island, in Listvennichny Bay) and in the Kaya (within the city of Irkutsk, located in the same drainage basin as Lake Baikal) were determined using DNAmetabarcoding. About 15 thousand reads of the 18S rRNA marker were obtained by applying NGS (next-generation sequencing). The species of algae dominating in the number of reads, as well as the difficult-to-identify taxa (Stramenopiles, Alveolata, Euglenozoa, Chromista, Rhizaria, Amoebozoa, etc.), which play an important role in the functioning and formation of the structure of algal communities, were revealed. The Shannon index of the communities studied ranges from 1.56 to 2.72. The advantages and weaknesses of using DNA-metabarcoding based on the 18S rRNA gene fragment for studying the structure of algal communities are shown. The advantage of this method is the possibility to more fully determine the diversity of eukaryotes taxa, which are difficult to identify by morphology, without involving a large number of specialists, while the disadvantage of the method is the distortion that may occur during the PCR. Here, ways of solving this problem are proposed. The results of the study show that the analysis of the minor component of the eukaryotic community in samples (organisms with low biomass) consisting of a mixture of multicellular and unicellular organisms requires a read-depths of at least 100,000 sequences per sample. In general, the DNA-metabarcoding method is recommended for studying the structure of algal communities and eukaryotes associated with them.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3