Biochemical and technological properties of moose (<i>Alces alces</i>) recombinant chymosin

Author:

Balabova D. V.1ORCID,Rudometov A. P.2ORCID,Belenkaya S. V.3,Belov A. N.4,Koval A. D.4,Bondar A. A.5ORCID,Bakulina A. Yu.6ORCID,Rukhlova E. A.2,Elchaninov V. V.4ORCID,Shcherbakov D. N.7ORCID

Affiliation:

1. Altai State University

2. State Research Center of Virology and Biotechnology “Vector”

3. Altai State University; State Research Center of Virology and Biotechnology “Vector”; Novosibirsk State University

4. Federal Altai Scientific Center for Agrobiotechnology, Siberian Research Institute of Cheese-Making

5. Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences

6. State Research Center of Virology and Biotechnology “Vector”; Novosibirsk State University

7. Altai State University; State Research Center of Virology and Biotechnology “Vector”

Abstract

Recombinant chymosins (rСhns) of the cow and the camel are currently considered as standard milk coagulants for cheese-making. The search for a new type of milk-clotting enzymes that may exist in nature and can surpass the existing “cheese-making” standards is an urgent biotechnological task. Within this study, we for the first time constructed an expression vector allowing production of a recombinant analog of moose chymosin in the expression system ofEscherichia coli(strain SHuffle express). We built a model of the spatial structure of moose chymosin and compared the topography of positive and negative surface charges with the correspondent structures of cow and camel chymosins. We found that the distribution of charges on the surface of moose chymosin has common features with that of cow and camel chymosins. However, the moose enzyme carries a unique positively charged patch, which is likely to affect its interaction with the substrate. Biochemical and technological properties of the moose rChn were studied. Commercial rСhns of cow and camel were used as comparison enzymes. In some technological parameters, the moose rChn proved to be superior to the reference enzymes. Сompared with the cow and camel rСhns, the moose chymosin specific activity is less dependent on the changes in CaCl2concentration in the range of 1–5 mM and pH in the range of 6–7, which is an attractive technological property. The total proteolytic activity of the moose rСhn occupies an intermediate position between the rСhns of cow and camel. The combination of biochemical and technological properties of the moose rСhn argues for further study of this enzyme.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3