The functional insight into the genetics of cardiovascular disease: results from the post-GWAS study

Author:

Bryzgalov L. O.1,Korbolina E. E.1,Damarov I. S.1,Merkulova T. I.2

Affiliation:

1. Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

2. Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Abstract

Cardiovascular diseases (CVDs), the leading cause of death worldwide, generally refer to a range of pathological conditions with the involvement of the heart and the blood vessels. A sizable fraction of the susceptibility loci is known, but the underlying mechanisms have been established only for a small proportion. Therefore, there is an increasing need to explore the functional relevance of trait-associated variants and, moreover, to search for novel risk genetic variation. We have reported the bioinformatic approach allowing effective identification of functional non-coding variants by integrated analysis of genome-wide data. Here, the analysis of 1361 previously identified regulatory SNPs (rSNPs) was performed to provide new insights into cardiovascular risk. We found 773,471 coding co-segregating markers for input rSNPs using the 1000 Genomes Project. The intersection of GWAS-derived SNPs with a relevance to cardiovascular traits with these markers was analyzed within a window of 10 Kbp. The effects on the transcription factor (TF) binding sites were explored by DeFine models. Functional pathway enrichment and protein– protein interaction (PPI) network analyses were performed on the targets and the extended genes by STRING and DAVID. Eighteen rSNPs were functionally linked to cardiovascular risk. A significant impact on binding sites of thirteen TFs including those involved in blood cells formation, hematopoiesis, macrophage function, inflammation, and vasoconstriction was found in K562 cells. 21 rSNP gene targets and 5 partners predicted by PPI were enriched for spliceosome and endocytosis KEGG pathways, endosome sorting complex and mRNA splicing REACTOME pathways. Related Gene Ontology terms included mRNA splicing and processing, endosome transport and protein catabolic processes. Together, the findings provide further insight into the biological basis of CVDs and highlight the importance of the precise regulation of splicing and alternative splicing.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

Reference89 articles.

1. 1000 Genomes Project Consortium, Auton A., Brooks L.D., Durbin R.M., Garrison E.P., Kang H.M., Korbel J.O., Marchini J.L., McCarthy S., McVean G.A., Abecasis G.R. A global reference for human genetic variation. Nature. 2015;526:68-74. DOI 10.1038/ nature15393.

2. Albarrán-Juárez J., Iring A., Wang S., Joseph S., Grimm M., Strilic B., Wettschureck N., Althoff T.F., Offermanns S. Piezo1 and Gq/G11 promote endothelial inflammation depending on flow pattern and integrin activation. J. Exp. Med. 2018;215(10):2655-2672. DOI 10.1084/jem.20180483.

3. Alper S.L. Genetic Diseases of PIEZO1 and PIEZO2 Dysfunction. Curr. Top. Membr. 2017;79:97-134. DOI 10.1016/bs.ctm.2017.01.001.

4. Anderson D., Lassmann T. A phenotype centric benchmark of variant prioritisation tools. NPJ Genom. Med. 2018;3:5. DOI 10.1038/ s41525-018-0044-9.

5. Arking D.E., Pulit S.L., Crotti L., van der Harst P., Munroe P.B., Koopmann T.T., Sotoodehnia N., Rossin E.J., Morley M., Wang X., … Schwartz P.J., Kääb S., Chakravarti A., Ackerman M.J., Pfeufer A., de Bakker P.I.W., Newton-Cheh C. Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization. Nat. Genet. 2014;46(8):826-836. DOI 10.1038/ng.3014.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3