Microspore embryogenesis in vitro: the role of stresses

Author:

Djatchouk T. I.1ORCID,Khomyakova O. V.1ORCID,Akinina V. N.1ORCID,Kibkalo I. A.1ORCID,Pominov A. V.1ORCID

Affiliation:

1. Agricultural Research Institute of South-East Region

Abstract

Gametic embryogenesis is one form of totipotency of plant cells, in which either male or female gametes are induced to form embryoids (sporophytes). Regeneration of haploid plants from embryoids and subsequent chromosome duplication result in doubled haploids and DH-lines. The production of haploids and doubled haploids (DHs) through gametic embryogenesis allows a single-stage development of complete homozygous lines from heterozygous plants. The development of effective haploid protocols to produce homozygous plants has a significant impact on plant breeding, shorting the time and costs required to establish new cultivars. There are several available methods to obtain haploids and DHs-lines, of which anther or isolated microspore culture in vitro are the most effective. Microspore embryogenesis is more commonly applied. This is in part because more male gametophytes are contained in a single anther compared to the single female gametophyte per embryo sac. Microspore embryogenesis is regarded as one of the most striking examples of plant cell totipotency. The switch of cultured microspores from gametophytic to sporophytic mode of development has been induced by stress treatments of various kinds applied to donor plants, inflorescences, buds, anthers or isolated microspores both in vivo and in  vitro. Physical or chemical pretreatments (cold and heat shock, sugar starvation, colchicine, n-butanol, gametocydes) act as a trigger for inducing the sporophytic pathway, preventing the gametophytic pathway development of microspore. The recent investigations have revealed that cold pretreatment during microspore reprogramming acts rather as an anti-stress factor alleviating the real stress caused by nutrient starvation of anthers or microspores isolated from donor plants. Under stress pretreatment a vacuolated and polarized microspore transformed into a depolarized and dedifferentiated cell, which is an obligatory condition for reprogramming their development. We summarize data concerning the role of various stresses in the induction of microspore embryogenesis and possible mechanisms of their action at cellular and molecular levels. Identification of new stresses allows creating efficient protocols of doubled haploid production for end-user application in the breeding of many important crops.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3