The effect of salicylic and jasmonic acids on the activity of <i>SnAGO</i> genes in the fungus <i>Stagonospora nodorum</i> Berk. in <i>in vitro</i> culture and during infection of wheat plants

Author:

Shein M. Yu.1ORCID,Burkhanova G. F.1ORCID,Maksimov I. V.1ORCID

Affiliation:

1. Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Abstract

RNA interference is a gene silencing mechanism that plays an important role in genetic regulation in a number of eukaryotes. Argonaute (AGO) proteins are central to the complex RNA interference system. However, their role in this mechanism, both in the host plant organism and in the pathogen, has not yet been fully elucidated. In this work, we identified and phylogenetically analyzed the SnAGO1, SnAGO2, SnAGO3, and SnAGO18 genes of the pathogenic fungus Stagonospora nodorum Berk., and analyzed their expression under conditions of infection of plants with varying degrees of resistance to the pathogen. The expression level against the background of plant immunization with the resistance inducers salicylic and jasmonic acids was assessed. In addition, the activity of these genes in the culture of the fungus in vitro was studied under the direct influence of resistance inducers on the mycelium of the fungus. Earlier activation of the SnAGO genes in in vitro culture under the influence of salicylic and jasmonic acids suggests their sensitivity to it. In an in vivo system, plant immunization to induce the accumulation of pathogen SnAGO transcripts was found. At the same time, the SnAGO genes of the fungus S. nodorum, when interacting with plant cells, reacted depending on the degree of host resistance: the highest level of transcripts in the resistant variety was observed. Thus, our data prove that the SnAGO genes of the fungus S. nodorum effectively interact with the host defense system in direct proportion to the degree of resistance of the latter to the pathogen. It was proposed to use the ratio of the transcriptional activity of the fungal reference gene SnTub to the host TaRLI gene as a marker of disease development in the initial period of the infectious process.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3