Genome-wide association study for charcoal rot resistance in soybean harvested in Kazakhstan

Author:

Zatybekov A.1ORCID,Abugalieva S.1ORCID,Didorenko S.2ORCID,Rsaliyev A.3ORCID,Maulenbay A.3ORCID,Fang C.4ORCID,Turuspekov Y.1ORCID

Affiliation:

1. Institute of Plant Biology and Biotechnology

2. Kazakh Research Institute of Agriculture and Plant Growing

3. Research Institute for Biological Safety Problems

4. School of Life Sciences, Guangzhou University

Abstract

Charcoal rot (CR) caused by the fungal pathogen Macrophomina phaseolina is a devastating disease affecting soybean (Glycine max (L.) Merrill.) worldwide. Identifying the genetic factors associated with resistance to charcoal rot is crucial for developing disease-resistant soybean cultivars. In this research, we conducted a genome-wide association study (GWAS) using different models and genotypic data to unravel the genetic determinants underlying soybean resistance to сharcoal rot. The study relied on a panel of 252 soybean accessions, comprising commercial cultivars and breeding lines, to capture genetic variations associated with resistance. The phenotypic evaluation was performed under natural conditions during the 2021–2022 period. Disease severity and survival rates were recorded to quantify the resistance levels in the accessions. Genotypic data consisted of two sets: the results of genotyping using the Illumina iSelect 6K SNP (single-nucleotide polymorphism) array and the results of whole-genome resequencing. The GWAS was conducted using four different models (MLM, MLMM, FarmCPU, and BLINK) based on the GAPIT platform. As a result, SNP markers of 11 quantitative trait loci associated with CR resistance were identified. Candidate genes within the identified genomic regions were explored for their functional annotations and potential roles in plant defense responses. The findings from this study may further contribute to the development of molecular breeding strategies for enhancing CR resistance in soybean cultivars. Marker-assisted selection can be efficiently employed to accelerate the breeding process, enabling the development of cultivars with improved resistance to сharcoal rot. Ultimately, deploying resistant cultivars may significantly reduce yield losses and enhance the sustainability of soybean production, benefiting farmers and ensuring a stable supply of this valuable crop.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3