Affiliation:
1. Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
2. Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Abstract
To date, many derivatives and analogs of nucleic acids (NAs) have been developed. Some of them have found uses in scientific research and biomedical applications. Their effective use is based on the data about their properties. Some of the most important physicochemical properties of oligonucleotides are thermodynamic parameters of the formation of their duplexes with DNA and RNA. These parameters can be calculated only for a few NA derivatives: locked NAs, bridged oligonucleotides, and peptide NAs. Existing predictive approaches are based on an analysis of experimental data and the consequent construction of predictive models. The ongoing pilot studies aimed at devising methods for predicting the properties of NAs by computational modeling techniques are based only on knowledge about the structure of oligonucleotides. In this work, we studied the applicability of the weighted histogram analysis method (WHAM) in combination with umbrella sampling to the calculation of thermodynamic parameters of DNA duplex formation (changes in enthalpy ∆H°, entropy ∆S°, and Gibbs free energy ∆G37° ). A procedure was designed involving WHAM for calculating the hybridization properties of oligodeoxyribonucleotides. Optimal parameters for modeling and calculation of thermodynamic parameters were determined. The feasibility of calculation of ∆H°, ∆S°, and ∆G37° was demonstrated using a representative sample of 21 oligonucleotides 4–16 nucleotides long with a GC content of 14–100 %. Error of the calculation of the thermodynamic parameters was 11.4, 12.9, and 11.8 % for ∆H°, ∆S°, and ∆G37° , respectively, and the melting temperature was predicted with an average error of 5.5 °C. Such high accuracy of computations is comparable with the accuracy of the experimental approach and of other methods for calculating the energy of NA duplex formation. In this paper, the use of WHAM for computation of the energy of DNA duplex formation was systematically investigated for the first time. Our results show that a reliable calculation of the hybridization parameters of new NA derivatives is possible, including derivatives not yet synthesized. This work opens up new horizons for a rational design of constructs based on NAs for solving problems in biomedicine and biotechnology.
Publisher
Institute of Cytology and Genetics, SB RAS
Subject
General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences
Reference25 articles.
1. Banerjee D., Tateishi-Karimata H., Ohyama T., Ghosh S., Endoh T., Takahashi S., Sugimoto N. Improved nearest-neighbor parameters for the stability of RNA/DNA hybrids under a physiological condition. Nucleic Acids Res. 2020;48(21):12042-12054. DOI 10.1093/nar/gkaa572
2. Cantor C.R., Schimmel P.R. Biophysical Chemistry. Part I: The Conformation of Biological Macromolecules. New York: W.H. Freeman & Company, 1980
3. Case D.A., Walker R.C., Cheatham T.E., Simmerling C., Roitberg A., Merz K.M., Luo R., Darden T. Amber 18. Reference Manual. San Francisco: Univ. of California, 2018
4. Chen H., Meisburger S.P., Pabit S.A., Sutton J.L., Webb W.W., Pollack L. Ionic strength-dependent persistence lengths of singlestranded RNA and DNA. Proc. Natl. Acad. Sci. USA. 2012;109(3): 799-804. DOI 10.1073/pnas.1119057109
5. Dowerah D., Uppuladinne M.V.N., Sarma P.J., Biswakarma N., Sonavane U.B., Joshi R.R., Ray S.K., Namsa N.D., Deka R.C. Design of LNA analogues using a combined density functional theory and molecular dynamics approach for RNA therapeutics. ACS Omega. 2023;8(25):22382-22405. DOI 10.1021/acsomega.2c07860