The expression profile of genes associated with behavior, stress, and adult neurogenesis along the hippocampal dorsoventral axis in tame and aggressive foxes

Author:

Alexandrovich Yu. V.1,Antonov E. V.2,Shikhevich S. G.1,Kharlamova A. V.1,Meister L. V.1,Makovka Y. V.1,Shepeleva D. V.1,Gulevich R. G.1,Herbeck Yu. E.3

Affiliation:

1. Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

2. Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Sirius University of Science and Technology, Scientific Center for Translational Medicine

3. Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; The Hebrew University of Jerusalem

Abstract

The hippocampus plays the key role in stress response regulation, and stress response appears to be weakened in domesticated animals compared to their wild relatives. The hippocampus is functionally heterogeneous along its dorsoventral axis, with its ventral compartment being more closely involved in stress regulation. An earlier series of experiments was conducted with a unique breeding model of animal domestication, the farm silver fox (Vulpes vulpes), which included tame, aggressive, and unselected animals. A decrease in many indices of the hypothalamic–pituitary–adrenal activity was observed in tame animals. Also, adult hippocampal neurogenesis was more intense in tame foxes, and this fact may relate to reduced stress levels in this experimental population of foxes. Nevertheless, the molecular mechanisms responsible for the reduced stress response in tame animals remain obscure. In this study, serum cortisol levels and the mRNA levels of 13 genes in the dorsal and ventral hippocampus have been measured and compared in tame, aggressive, and unselected foxes. At the current stage of domestication, stress-induced cortisol levels in tame, aggressive, and unselected animals differ significantly from each other: tame foxes show the lowest levels, and aggressive ones, the highest. Twelve genes tested demonstrate significant gene expression differences between the dorsal and ventral hippocampi. These differences are mainly consistent with those found in rodents and humans. In tame foxes, significantly elevated mRNA levels were recorded for several genes: CYP26B1 for cytochrome P450 26B1 and ADRA1A for α1A adrenergic receptor in the dorsal hippocampus, whereas the level of NR3C2 mRNA for mineralocorticoid receptor was higher in the ventral. It is presumed that these genes constitute an important part of the mechanism reducing stress induced by contacts with humans and contribute to linking stress regulation with adult neurogenesis in tame foxes and domesticated animals in general.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3