Smallpox vaccination in a mouse model

Author:

Shchelkunov S. N.1ORCID,Sergeev A. A.2ORCID,Pyankov S. A.2ORCID,Titova K. A.2,Yakubitskiy S. N.2ORCID

Affiliation:

1. State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor; Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences

2. State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor

Abstract

The monkeypox epidemic, which became unusually widespread among humans in 2022, has brought awareness about the necessity of smallpox vaccination of patients in the risk groups. The modern smallpox vaccine variants are introduced either intramuscularly or by skin scarification. Intramuscular vaccination cannot elicit an active immune response, since tissues at the vaccination site are immunologically poor. Skin has evolved into an immunologically important organ in mammals; therefore, intradermal delivery of a vaccine can ensure reliable protective immunity. Historically, vaccine inoculation into scarified skin (the s.s. route) was the first immunization method. However, it does not allow accurate vaccine dosing, and high-dose vaccines need to be used to successfully complete this procedure. Intradermal (i.d.) vaccine injection, especially low-dose one, can be an alternative to the s.s. route. This study aimed to compare the s.s. and i.d. smallpox immunization routes in a mouse model when using prototypic second- and fourth-generation low-dose vaccines (104 pfu). Experiments were conducted using BALB/c mice; the LIVP or LIVP-GFP strains of the vaccinia virus (VACV) were administered into the tail skin via the s.s. or i.d. routes. After vaccination (7, 14, 21, 28, 42, and 56 days post inoculation (dpi)), blood samples were collected from the retro-orbital venous sinus; titers of VACV-specific IgM and IgG in the resulting sera were determined by ELISA. Both VACV strains caused more profound antibody production when injected via the i.d. route compared to s.s. inoculation. In order to assess the level of the elicited protective immunity, mice were intranasally infected with a highly lethal dose of the cowpox virus on 62 dpi. The results demonstrated that i.d. injection ensures a stronger protective immunity in mice compared to s.s. inoculation for both VACV variants.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Chioce of vaccination regimen against orthopoxvirus infections in a mouse model;Molecular Genetics, Microbiology and Virology (Russian);2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3