Identification of new nucleotide sequences of the <i>Glu-B1-1</i> gene encoding x-type glutenins in bread wheat

Author:

Galimova A. A.1ORCID,Kuluev B. R.1ORCID

Affiliation:

1. Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences; Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Abstract

Studies of the genetic base and polymorphism of bread wheat cultivars aimed at identifying alleles of genes associated with high baking and other economically valuable traits seem to be relevant, since bread wheat, along with all representatives of the Triticeae tribe, has a huge genetic potential for creating cultivars with high technological and rheological properties of grain flour. The aim of this study was sequencing and analysis of the nucleotide sequences of the Glu-B1-1 gene, and analysis of the predicted amino acid sequences of its protein product in three cultivars of bread wheat. Thus, in the course of genotyping cultivars and lines of bread wheat for the Glu-B1-1 gene, in the cultivars ‘Avesta’, ‘Leningradka krupnozernaya’ and line C-75094, previously undescribed changes in the size of amplifiable regions of the Glu-B1-1 gene for high-molecular-weight glutenins were found. Comparative analysis of the nucleotide sequences of these genes with known sequences showed the presence of two deletions in ‘Avesta’ and C-75094 and the presence of seven single-nucleotide substitutions in ‘Leningradka krupnozernaya’. Alignment of the predicted Glu-B1 amino acid sequences of the studied accessions and the standard cultivar carrying the Glu-B1-a allele showed that deletions in the amino acid sequences of ‘Avesta’ and C-75094 accessions are localized in the central domain of the protein and affect the amount of tri-, hexa-, and nonapeptides, and in ‘Leningradka krupnozernaya’, a decrease in GQQ and PGQGQQ by one unit was revealed. In addition, substitutions of five amino acids were found in ‘Leningradka krupnozernaya’. Thus, we have found previously undescribed deletions and substitutions in the nucleotide sequences of the Glu-B1-1 gene for high-molecular-weight glutenins, which lead to changes in amino acid sequences in functionally important regions, namely, in the central domains of protein molecules. The identified mutations can be used for genotyping bread wheat cultivars.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3