Сontrolled breeding of the psychrophilic strain G-034 VIZR of Trichoderma asperellum for fast crop residues’ polymers utilization and soil enhancement

Author:

Novikova I. I.1ORCID,Titova J. A.1ORCID,Boykova I. V.1,Krasnobaeva I. L.1

Affiliation:

1. All-Russian Research Institute of Plant Protection

Abstract

Genus Trichoderma strains as the natural plant residues’ biodestructors, highly active antagonists of soil phytopathogens and phytoregulators with the widest range of optimum conditions for their development, are widely used in biologics development. Of particular importance in Russia’s northern regions, especially in winter crop cultivation, is the ability of a microorganism’s strain used in agro-technologies to maintain viability and target biological activity at low temperatures. In this connection, this work purpose is to select a psychrotolerant strain of T. asperellum for the rapid crop residues’ polymer utilization and soil enhancement at low temperature, as well as to evaluate its activity under laboratory and field conditions. In the work process, the following tasks were addressed: selecting psychrotolerant strains of T. asperellum with high cellulolytic activity; further controlled breeding of psychrophilic strains capable of rapid growth, active colonization of plant substrates and high sporulation at 4–8 °C; evaluating the target activity of the selected psychrophilic strain as a cellulolytic as well as antagonistic activity against cereal pathogens; obtaining laboratory samples of bioformulations by deep-surface cultivation on non-sterile peat and multirecycled wastes from the edible mushrooms production and assessing their efficacy in field small-plot trials. The methods for inoculum cultivation, sporulation capacity determination, modified wet chamber, estimating antagonistic activity and biologics’ quality, field small-plot trials management, quantitative estimates of biomass losses, cellulose and lignin content were used in the work. The active psychrophilic strain for the rapid crop residues’ polymer utilization and soil enhancement controlled breeding was selected during a four-step screening of 29 T. asperellum strains from All-Russian Research Institute of Plant Protection (VIZR) State Microorganisms’ Collection with high cellulolytic and antagonistic activities. In terms of linear growth rate, antagonistic and hyperparasitic activities at 4–8 °С, a high rate of wheat and maize stubble residues’ colonization, a perspective psychrophilic strain G-034 of T. asperellum was selected for developing the laboratory samples of biologics and for running field trials. In small-plot trials, the active maize crop residues’ decomposition under the T. asperellum G-034 influence was revealed, resulting in the complete loss of plant intact state in 12 months due to more than 80 % cellulose and 20 % lignin biodestruction. The maximum loss of maize crop residues biomass for 12 months was more than 70 %. The T. asperellum strain G-034 was active after field hibernation in an amount of ×104 cfu/g, resulting in a titer increase with seasonal temperature rising and the trophic base bioavailability growth.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3