An increased proportion of transgenic plants in the progeny of rapeseed (Brassica napus L.) transformants

Author:

Raldugina G. N.1ORCID,Hoang T. Z.2ORCID,Ngoc H. B.1,Karpichev I. V.1

Affiliation:

1. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences

2. Timiryazev Institute of Plant Physiology of the Russian Academy of Sciences; NKLPCB, Agricultural Genetics Institute

Abstract

Cotyledon and leaf explants of two spring rapeseed varieties were transformed with Agrobacterium tumefaciens harboring a genetic construct with the gfp marker gene. In order to reduce the proportion of hyperhydrated shoots, which appeared during regenerant formation, we optimized sucrose content in the regeneration media. Analysis of the progeny obtained from T0 regenerants showed that in a number of lines the distribution of the gfp marker did not follow Mendelian segregation of a monogenic trait in self-pollinated plants, while in the progeny of the other lines of transgenic plants, the gfp marker was completely absent, although its presence had been confirmed in all selected T0 plants. We also found that in individual transformants gfp is randomly inherited throughout the central peduncle; its presence in the genome of seedlings does not depend on the location of the pod. Thus, both transformed and non-transformed cells were involved in the formation of gametes in T0 plants. In addition, marker segregation was different in plants of the T1 line obtained by nodal cuttings of a primary transformant, depending on the location of the cuttings on the stem of the original plant, indicating that the nature of T1 generation plants was also chimeric. Furthermore, we showed that propagation of plants by cutting followed by propagation by seeds formed as a result of self-pollination led to an increase in the proportion of transgenic plants in subsequent generations. The results obtained during the course of this study show that the transformants were chimeric, i. e. their tissues contained both transgenic and non-transgenic cells, and this chimeric nature was passed on to subsequent generations. We found that, in addition to nutrient media composition, other factors such as plant genotype and explant type also contribute to the rising of chimeric plants during transformation. Based on these results, we developed a simplified method, which consists of several rounds of a combination of cutting, seed production by self-pollination, and subsequent culling of wild-type plants, which significantly enriched descendent populations of the original rapeseed transformants with plants transgenic for the gfp marker.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3