Diagnosis of the mechanisms of different types of discordances between phylogenies inferred from nuclear and mitochondrial markers

Author:

Poroshina A. A.1ORCID,Sherbakov D. Y.1ORCID,Peretolchina T. E.1ORCID

Affiliation:

1. Limnological Institute of Siberian Branch of the Russian Academy of Sciences

Abstract

In ancient freshwater lakes, an abnormally large species diversity is observed. The mechanisms that g nerated extremely high biodiversity in the ancient lakes have not been sufficiently studied and remain only partially known. Sequences of environmental changes in highly complex ecosystems such as Lake Baikal, may induce sophisticated combinations of microevolutionary processes. These processes are likely to result in unusual “patterns” of genetic variability of species. The most unusual patterns include the ones when speciation is followed by incomplete lineage sorting as well as mitochondrial or nuclear introgression. All these phenomena are diagnosed by comparing the topologies of phylogenetic trees inferred from molecular markers of evolution located in mitochondria and nuclei. Mitochondrial and nuclear introgression is a particularly interesting and complex case, which is the process of incorporating the gene alleles of one species into the gene pool of a sister species due to interspecific hybridization (introgressive hybridization). In many cases, existing methods for molecular phylogenetic analysis do not automatically allow the observed patterns of polymorphism to be explained and, therefore, cannot provide hypotheses that would explain the mechanisms which resulted to these patterns. Here we use adaptive dynamics models to study neutral molecular evolution under various scenarios of interaction between sister species and the environment. We propose and justify a set of criteria for detecting how two evolutionary trees may differ, with a special focus on comparing a tree inferred from nuclear DNA to one from mitochondrial DNA. The criteria react to branching pattern and branch lengths, including relative distances from ancestral lineages. Simulations show that the criteria allow fast and automated detection of various types of introgression, secondary breaches of reproductive barriers, and incomplete lineage sorting.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3