Genomic regions of Solanum tuberosum L. associated with the tuber eye depth

Author:

Totsky I. V.1ORCID,Rozanova I. V.2,Safonova A. D.3,Batov A. S.3,Gureeva Yu. A.3,Kochetov A. V.4ORCID,Khlestkina E. K.2ORCID

Affiliation:

1. Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Siberian Research Institute of Plant Production and Breeding – Branch of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences

2. Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

3. Siberian Research Institute of Plant Production and Breeding – Branch of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences

4. Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences

Abstract

Potato (Solanum tuberosum L.) is one of the most important food crops in the world. The genome of this potato species is autotetraploid and has a high level of heterozygosity, also this potato species is a cross-pollinated plant. These characteristics complicate the genetic analysis and breeding process. The tuber’s eye depth is an important trait that affects the suitability of potato varieties for processing. Potato breeding for this trait is based on phenotypic assessment. Identification of the loci that control tuber eye depth would allow diagnostic markers for the marker-assisted selection to be created. The aim of this study is to search for loci associated with the eye depth by analyzing Solanum tuberosum varieties from the GenAgro collection of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, genotyped using the Illumina 22K SNP potato array DNA chip. The 24 significant markers associated with the “eye depth” trait were identified using 15,214 SNP markers genotyped with the Illumina 22K SNP potato array chip and the general linear model (GLM) taking into account the population structure. Data obtained showed the presence of SNPs in four genomic regions: on chromosome 4 (1 marker in the 3.92 Mb area), 5 (1 marker in the 4.67 Mb area) and 10 (1 marker in the 4.87 Mb area and 21 markers in the region between 48.1–48.9 Mb). The results of localization in the region 48.1–48.9 Mb of chromosome 10 correspond to previously published studies, the remaining three regions were detected for the first time. DNA sections containing SNPs linked to the tuber’s eye depth were studied in the SolTub_3.0 potato genome assembly (https:// plants.ensembl.org/). KASP markers were developed based on the data obtained. It will be possible to screen the breeding material and to breed the varieties more effectively using current markers associated with a shallow tuber’s eye depth.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3