Phylostratigraphic analysis of gene networks of human diseases

Author:

Mustafin Z. S.1ORCID,Lashin S. A.2ORCID,Matushkin Yu. G.1ORCID

Affiliation:

1. Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences

2. Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Abstract

Phylostratigraphic analysis is an approach to the study of gene evolution that makes it possible to determine the time of the origin of genes by analyzing their orthologous groups. The age of a gene belonging to an orthologous group is def ined as the age of the most recent ancestor of all species represented in that group. Such an analysis can reveal important stages in the evolution of both the organism as a whole and groups of functionally related genes, in particular gene networks. In addition to investigating the time of origin of a gene, the level of its genetic variability and what type of selection the gene is subject to in relation to the most closely related organisms is studied. Using the Orthoscape application, gene networks from the KEGG Pathway, Human Diseases database describing various human diseases were analyzed. It was shown that the majority of genes described in gene networks are under stabilizing selection and a high reliable correlation was found between the time of gene origin and the level of genetic variability: the younger the gene, the higher the level of its variability is. It was also shown that among the gene networks analyzed, the highest proportion of evolutionarily young genes was found in the networks associated with diseases of the immune system (65 %), and the highest proportion of evolutionarily ancient genes was found in the networks responsible for the formation of human dependence on substances that cause addiction to chemical compounds (88 %); gene networks responsible for the development of infectious diseases caused by parasites are signif icantly enriched for evolutionarily young genes, and gene networks responsible for the development of specif ic types of cancer are signif icantly enriched for evolutionarily ancient genes.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3