Application of alternative de novo motif recognition models for analysis of structural heterogeneity of transcription factor binding sites: a case study of FOXA2 binding sites

Author:

Tsukanov A. V.1ORCID,Levitsky V. G.2ORCID,Merkulova T. I.2

Affiliation:

1. Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences

2. Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Abstract

The most popular model for the search of ChIP-seq data for transcription factor binding sites (TFBS) is the positional weight matrix (PWM). However, this model does not take into account dependencies between nucleotide occurrences in different site positions. Currently, two recently proposed models, BaMM and InMoDe, can do as much. However, application of these models was usually limited only to comparing their recognition accuracies with that of PWMs, while none of the analyses of the co-prediction and relative positioning of hits of different models in peaks has yet been performed. To close this gap, we propose the pipeline called MultiDeNA. This pipeline includes stages of model training, assessing their recognition accuracy, scanning ChIP-seq peaks and their classif ication based on scan results. We applied our pipeline to 22 ChIP-seq datasets of TF FOXA2 and considered PWM, dinucleotide PWM (diPWM), BaMM and InMoDe models. The combination of these four models allowed a signif icant increase in the fraction of recognized peaks compared to that for the sole PWM model: the increase was 26.3 %. The BaMM model provided the main contribution to the recognition of sites. Although the major fraction of predicted peaks contained TFBS of different models with coincided positions, the medians of the fraction of peaks containing the predictions of sole models were 1.08, 0.49, 4.15 and 1.73 % for PWM, diPWM, BaMM and InMoDe, respectively. Thus, FOXA2 BSs were not fully described by only a sole model, which indicates theirs heterogeneity. We assume that the BaMM model is the most successful in describing the structure of the FOXA2 BS in ChIP-seq datasets under study.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3