Mutation yellow in agouti loci prevents age-related increase of skeletal muscle genes regulating free fatty acids oxidation

Author:

Piskunova Y. V.1,Kazantceva A. Y.2,Baklanov A. V.2,Bazhan N. M.3

Affiliation:

1. Novosibirsk State University

2. Institute of Cytology and Genetics SB RAS

3. Novosibirsk State University; Institute of Cytology and Genetics SB RAS

Abstract

The lethal yellow mutation in agouti loci (Ay mutation) reduces the activity of melanocortin (MC) receptors and causes hyperphagia, obesity and type two diabetes mellitus in aging mice (Ay mice). It is unknown if changes in distinct elements of the metabolic system such as white adipose tissue (WAT) and brown adipose tissue (BAT), and skeletal muscle will manifest before the development of obesity. The aim of this work was to measure the relative gene expression of key proteins that regulate carbohydrate-lipid metabolism in WAT, BAT and skeletal muscle in Ay mice before the development of obesity. C57Bl/6J mice bearing a dominant autosomal mutation Ay (Ay /a mice) and mice of the standard genotype (a/a mice, control) have been studied in three age groups: 10, 15 and 30 weeks. The relative mRNA level of genes was measured by real-time PCR in skeletal muscles (uncoupling protein 3 (Ucp3) and carnitine palmitoyl transferase 1b (Cpt1b) (free fatty acids oxidation), solute carrier family 2 (facilitated glucose transporter), member 4 (Slc2a4) (glucose uptake)), in WAT lipoprotein lipase (Lpl) (triglyceride deposition), hormone-sensitive lipase (Lipe) (lipid mobilization), and Slc2a4 (glucose uptake)), and in BAT: uncoupling protein 1 (Ucp1) (energy expenditure). The expression of Cpt1b was reduced in young Ay mice (10 weeks), there was no transient peak of transcription of Cpt1b, Ucp3 in skeletal muscle tissue and Lipe, Slc2a4 in WAT in early adult Ay mice (15 weeks), which was noted in а/а mice. Reduction of the transcriptional activity of the studied genes in skeletal muscle and white adipose tissue can initiate the development of melanocortin obesity in Ay mice.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology,General Agricultural and Biological Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3