The role of the neural NO synthase adapter protein in the pathogenesis of metabolic syndrome and type 2 diabetes mellitus

Author:

Kuznetsova L. A.1ORCID,Basova N. E.1ORCID

Affiliation:

1. Sechenov Institute of Evolutionary Physiology and Biochemistry RAS

Abstract

The pathogenesis of metabolic syndrome (MS) is characterized by obesity, hypertension, dyslipidemia and insulin resistance. MS increases the risk of developing type 2 diabetes mellitus (DM2). The neuronal isoform of nitric oxide synthase (nNOS) is defined by complex protein-protein interactions, since nNOS, unlike other isoforms of NOS,contains a C-terminal PDZ domain, which allows it to conjugate with other proteins and, first of all, to interact with an adapter of neuronal, or type 1, nitric oxide synthase (NOS1AP), also denoted CAPON in our work. Changes in the interaction between nNOS and NOS1AP lead to metabolic disorders in brain, heart, liver and skeletal muscles, which plays a key role in the development of MS and T2DM. NOS1AP, interacting with the PDZ domain of nNOS, competes with the postsynaptic density protein (PSD95) and regulates the stability of subcellular localization of nNOS and enzyme expression during synapse formation. NOS1AP promotes nNOS binding to targets such as small GTPase (Dexras1), synapsines, regulating the formation of dendritic roots, mediates activation of the nNOS-p38MAP kinase pathway during excitotoxicity. It has been shown that single-nucleotide polymorphism of the NOS1AP gene and its overexpression in the myocardium leads to the manifestation of long QT syndrome, which is most clearly manifested in elderly patients with DM2. It was found that the genetic polymorphism of NOS1AP affects insulin secretion when using calcium blockers, and can promote the development of DM2. The functional role of NOS1AP in stabilizing the functions of skeletal muscle nNOS in the cytoskeletal complex associated with dystrophin/utrophin was discovered. The purpose of the review is to provide updated information on the role of NOS1AP and the nNOS/NOS1AP complex in the pathogenesis of MS and DM2. The potential molecular mechanisms of the interaction of NOS1AP with nNOS and with other proteins, which leads to change in nNOS activity, localization and content, are discussed.

Publisher

Institute of Cytology and Genetics, SB RAS

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3