Effect of nitric oxide modulators on cerebrospinal fluid outflow through the cribriform plate of C57Bl/6 mice

Author:

Petrovsky D. V.1ORCID,Kim V. A.2,Sharapova M. B.2ORCID,Zuev D. S.2,Ibrayeva A. Zh.2,Silvanovich E. K.2,Moshkin M. P.2ORCID,Romashchenko A. V.3ORCID

Affiliation:

1. Federal Research Center Institute of Cytology and Genetics of SB RAS; Lavrentiev Institute of Hydrodynamics of SB RAS

2. Federal Research Center Institute of Cytology and Genetics of SB RAS

3. Federal Research Center Institute of Cytology and Genetics of SB RAS; Federal Research Center Institute of Computational Technologies of SB RAS; International Tomography Center of SB RAS

Abstract

Introduction. Beside the excretion of metabolic wastes, the lymphatic system in CNS play a crucial role in the regulation of intracranial pressure that is vital for the organism. One of the possible pathways of cerebrospinal fluid (CSF) drainage is its flow through the foramen of the cribriform plate (CP) into the nasal cavity. Despite the significant contribution of the nasal tract to the overall dynamics of the liquor, not much is known about the mechanisms of this process and how it is regulated. Due to its influence on the tone of blood vessels and peristalsis of lymphatic vessels, nitric oxide (NO) is a powerful modulator of liquor outflow, but its effects on nasal CSF outflow have not been studied yet. Aim and Methods. Using diffusion-weighted magnetic resonance imaging (DW MRI), we characterized the changes in CSF outflow through the CP of C57Bl/6 mice influenced by intranasal application of NO synthesis modulators. Results. In our study, using DW MRI and computer tomography (CT) mapping of the CP, we detected significant CSF outflow through its large dorsal and ventral foramen located along the nasal septum. At the same time, the CSF flow rate through the dorsal orifices of the CP was the highest. In addition, we showed that intranasal introduction of NO donor after 30 min leads to a significant decrease of water diffusion through the CP whereas application of a nonspecific NO synthase inhibitor into the nasal cavity enhances nasal outflow. The effects of the NO modulators did not have any significant spatial patterns; CSF outflow was significantly altered across all CP orifices regardless of their size or localization. Conclusion. The obtained results demonstrate the potential possibility of noninvasive local regulation of liquor dynamics, which may be used in the development of new approaches to the therapy of intracranial hypertension of various etiologies and methods of CNS detoxification.

Publisher

Institute of Cytology and Genetics, SB RAS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3